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Abstract— The Cramer Rao lower bound (CRLB) provides a
lower bound on the covariance matrix of any unbiased estimator
of unknown parameters. It is shown in this paper that the
CRLB for a data set generated by a bilinear system with
additive Gaussian measurement noise can be expressed explicitly
in terms of the outputs of its derivative system which is also
bilinear. For bilinear systems with piecewise constant inputs the
CRLB for uniformly sampled data can be efficiently computed
through solving certain Lyapunov equations. The theoretical
results are illustrated through an example arising from surface
plasmon resonance experiments for the determination of the
kinetic parameters of protein-protein interactions.

I. INTRODUCTION

A fundamental problem in biomedical applications is to
estimate unknown system parameters from output observa-
tions [1]. Although there are many methods for parameter
estimations for linear systems, it is well known that linear
models are not appropriate for some biomedical applications
and hence bilinear and/or nonlinear system models have to be
used [1], [2]. For parameter estimation for bilinear systems
which will be discussed in this paper, an important question
is the accuracy of the estimation that can be achieved based
on the observed noisy outputs. The Cramer Rao lower bound
(CRLB) gives a lower bound on the covariance matrix of any
unbiased estimator of unknown parameters [3]. It is commonly
used to evaluate the performance of an estimation algorithm
and can provide guidance to improve the experimental design.

The CRLB or Fisher information matrix for one-
dimensional (1D) dynamic non-stationary systems with de-
terministic input and Gaussian measurement noise has been
investigated in [4]. The calculation of the Fisher information
matrix for the 1D data is performed in terms of the derivative
system with respect to the system parameters and by using
the solution to a Lyapunov equation. The above approach has
been extended to multidimensional (nD) data sets generated
by nD linear separable-denominator systems and applied to
the analysis of nD nuclear magnetic resonance spectroscopy
data sets [5].

Here we generalize the results in [4] to bilinear systems. It
is shown that the Fisher information matrix for the output data
samples of a multiple-input-multiple-output (MIMO) bilinear
system can be expressed in terms of the outputs of its
derivative system which is also an MIMO bilinear system.

The notion of derivative system is very useful in that it gives
an explicit expression for the Fisher information matrix and
the CRLB. Furthermore, for uniformly sampled data sets, the
CRLB can be efficiently computed using algorithms based
on solutions to certain Lyapunov equations. The results are
then applied to estimation of kinetic constants of protein-
protein interactions arising from surface plasmon resonance
experiments [2], [6].

II. CRAMER RAO LOWER BOUND

Consider the state-space model of a general MIMO bilinear
system given by (see [7])

ẋθ(t) = Axθ(t) +
m∑

q=1

Fquq(t)xθ(t) + Bu(t), xθ(t[0]) = x0,

(1)

yθ(t) = Cxθ(t), t ≥ t[0], (2)

where xθ(t) ∈ R
n×1 is the state vector, u(t) ∈ R

m×1 is
the input vector with components u1(t), . . ., um(t), yθ(t) ∈
R

p×1 is the system output vector, A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n, Fq ∈ R
n×n, q = 1, . . . ,m, are the system

matrices depending on the unknown parameter vector θ :=[
θ1 . . . θK

]T
, and x0 is the initial state vector, which

can also depend on the parameter vector θ. The ith element
of yθ(t) is represented by yθ,i(t), and the ith row of C is
denoted by Ci, i = 1, . . . , p.

In this paper, we consider only piecewise constant inputs U

represented by

u(t) =
L−1∑
l=0

u[l]βl(t), t[0] ≤ t < t[L], (3)

where u[l] :=
[

u
[l]
1 . . . u

[l]
m

]T

are constant vectors, and

βl(t) (l = 0, . . . , L− 1) are the indicator functions defined by

βl(t) =
{

1, for t ∈ [
t[l], t[l+1]

)
,

0, for t /∈ [
t[l], t[l+1]

)
.

(4)

Here, t[0], . . . , t[L] denote the starting and ending points of
the time intervals with t[0] < . . . < t[L], where t[L] can be
either finite or infinite. Note that u[l] could be a zero vector,
and that for a piecewise constant input u ∈ U as defined in (3)
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we are only interested in the output yθ(t) for t[0] ≤ t < t[L].
We denote L1 := L − 1 throughout. For more general inputs
and proofs of the results presented here, see [8].

Lemma 2.1: Consider the bilinear system Φ =
{A, B, C, F1, . . . , Fm}. Let F [l] :=

∑m
q=1 Fqu

[l]
q

and assume that A + F [l] is invertible, l = 0, . . . , L1. Then
the output of the system is given by

yθ(t) =
L1∑
l=0

[
CQl(t)

(
W [l] + xθ(t[l])

)
− CW [l]

]
βl(t), (5)

where Ql(t) := e(A+F [l])(t−t[l]) and W [l] := (A +
F [l])−1Bu[l], l = 0, . . . , L1, and xθ(t[l]) is given by

xθ(t[l]) ={
x0, l = 0,
Ql−1(t[l])

(
W [l−1] + xθ(t[l−1])

)− W [l−1], l = 1, . . . , L1.
The following assumptions are made throughout the paper.

Assume that we have acquired noise corrupted samples sθ,i(j),
i = 1, . . . , p, j = 0, . . . , J − 1, of the measured output of the
bilinear system, i.e.,

sθ,i(j) = yθ,i(tj) + wi(j), (6)

where yθ,i(tj) is the ith noise free output element at the
sampling point tj and wi(j) is the measurement noise com-
ponent, i = 1, . . . , p, j = 0, . . . , J − 1, t[0] ≤ t0 < t1 <
. . . < tJ−1. The measurement noise components are assumed
to have independent Gaussian distributions with zero mean
and variance σ2

i,j , i = 1, . . . , p, j = 0, . . . , J − 1. Hence the
probability density function p(S; θ) for the acquired data set
S := {sθ,i(j), i = 1, . . . , p, j = 0, . . . , J − 1} is given by

p(S; θ) =
p∏

i=1

J−1∏
j=0

1√
2πσ2

i,j

exp

(
− 1

2σ2
i,j

[sθ,i(j) − yθ,i(tj)]
2

)
.

Assume p(S; θ) satisfies the standard regularity conditions
(see e.g. [3]). The Fisher information matrix I(θ) is then
defined as

[I(θ)]sr = E

{(
∂ ln p(S; θ)

∂θs

)(
∂ ln p(S; θ)

∂θr

)}
, 1 ≤ s, r ≤ K,

by the CRLB any unbiased estimator θ̂ of θ has a variance
such that

var(θ̂) ≥ I−1(θ),

where var(θ̂) ≥ I−1(θ) is interpreted as meaning that the
matrix (var(θ̂) − I−1(θ)) is positive semidefinite.

In the following theorem we first show that the derivative
system (with respect to the given parameter vector θ) of a
general MIMO bilinear system is also an MIMO bilinear
system. The Fisher information matrix for the sampled output
data of the bilinear system for Gaussian measurement noise
is then expressed using the output samples of its derivative
system.

Theorem 2.1: Consider the bilinear system represented by
Φ = {A, B, C, F1, . . . , Fm}. Assume that the partial

derivatives of A, B, C, F1, . . ., Fm and x0 with respect to
the elements of θ exist for all θ ∈ Θ, and that the input u(t)
is independent of the parameter vector θ. Let

Yθ(t) :=


 Yθ,1(t)

...
Yθ,p(t)


 , with

Yθ,i(t) :=




∂yθ,i(t)
∂θ1
...

∂yθ,i(t)
∂θK


 (i = 1, . . . , p) , t ≥ t[0].

Then, 1.) Yθ(t), t ≥ t[0], is the output of the derivative system
Φ′ := {A, B, C, F1, . . . , Fm}, which is an MIMO time-
invariant bilinear system with state vector Xθ(t), t ≥ t[0], and
has the same input u as Φ. The state vector Xθ, initial state
X0, and system matrices A, B, C, F1, . . . , Fm are given as
follows.

Xθ(t) :=


 ∂1xθ(t)

...
∂Kxθ(t)


 ,X0 :=


 ∂1xθ(t[0])

...
∂Kxθ(t[0])


 ,

A := diag {∂1A, . . . , ∂KA},B :=


 ∂1B

...
∂KB


 , C :=


 C1

...
Cp




Ci := diag {∂1Ci, . . . , ∂KCi}, i = 1, . . . , p,

Fq := diag {∂1Fq, . . . , ∂KFq}, q = 1, . . . ,m,

where for s = 1, . . . , K

∂sxθ(t) :=
[

xθ(t)
∂xθ(t)

∂θs

]
, ∂sxθ(t[0]) :=

[
x0
∂x0
∂θs

]
,

∂sA :=
[

A 0
∂A
∂θs

A

]
, ∂sB :=

[
B
∂B
∂θs

]
, ∂sCi :=

[
∂Ci

∂θs
Ci

]
,

∂sFq :=
[

Fq 0
∂Fq

∂θs
Fq

]
, q = 1, . . . ,m;

2.) The Fisher information matrix is given by

I(θ) =
p∑

i=1

J−1∑
j=0

1
σ2

i,j

PiYθ(tj)YT
θ (tj)PT

i . (7)

Here Pi ∈ R
K×pK , i = 1, . . . , p, is defined as

Pi = [ 0 . . . 0︸ ︷︷ ︸
(i−1) 0s

IK 0 . . . 0︸ ︷︷ ︸
(p−i) 0s

]
, (8)

where 0 denotes the K × K zero matrix and IK the K × K
identity matrix.

For the data set generated by a bilinear system with a piece-
wise constant input u ∈ U, the following corollary derives an
explicit expression of its associated Fisher information matrix.

Corollary 2.1: Assume that the bilinear system model and
assumptions are the same as in Theorem 2.1, and that A+F [l]

is invertible, where F [l] :=
∑m

q=1 Fqu
[l]
q , l = 0, . . . , L1. Let
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F [l] := diag {∂1F
[l], . . . , ∂KF [l]}, l = 0, . . . , L1, where for

s = 1, . . . ,K

∂sF
[l] :=

[
F [l] 0
∂F [l]

∂θs
F [l]

]
=

m∑
q=1

[
Fq 0
∂Fq

∂θs
Fq

]
u[l]

q .

Then, the output of the derivative system Φ′ is given by

Yθ(t) =
L1∑
l=0

[
CQl(t)

(
W [l] + Xθ(t[l])

)
− CW [l]

]
βl(t), (9)

where Ql(t) := e(A+F [l])(t−t[l]), W [l] :=
(A + F [l]

)−1 Bu[l],
l = 0, . . . , L1, and

Xθ(t[l]) ={ X0, l = 0,
Ql−1(t[l])

(W [l−1] + Xθ(t[l−1])
)−W [l−1], l = 1, . . . , L1.

When the output of a bilinear system is sampled uniformly,
the associated Fisher information matrix and the CRLB can
be computed efficiently through solving certain Lyapunov
equations, as shown in the following theorem.

Theorem 2.2: Assume that the data model is the same as
in Corollary 2.1, and that the output signal is uniformly
sampled with the sampling period Tl in the lth interval of
the piecewise constant input, i.e., at t

[l]

j[l] = t[l] + t[l,0] + j[l]Tl,

j[l] = 0, . . . , J [l] − 1, t[l] ≤ t
[l]

j[l] < t[l+1], where t
[l]

j[l] denotes

the j[l]th sampling instant in the lth interval, t[l,0] is the starting
time relative to t[l] for sampling in the lth interval , and J [l]

is the total number of samples acquired in the lth interval,
l = 0, . . . , L1, and the independent measurement Gaussian

noise variance σ
[l]
i,j

2
= σ2, i = 1, . . . , p, j = 0, . . . , J [l] − 1,

for l = 0, . . . , L1. Then the Fisher information matrix for the
given data set is

I(θ) =
1
σ2

·
p∑

i=1

PiC



L1∑
l=0


(A[l]

d

) t[l,0]
Tl P [l]

1

((
A[l]

d

) t[l,0]
Tl

)T

−
(
A[l]

d

) t[l,0]
Tl

(10)

·P [l]
2 −

(
P [l]

2

)T
((

A[l]
d

) t[l,0]
Tl

)T

+ J [l]W [l]
(
W [l]

)T




 CT PT

i ,

where P [l]
1 and P [l]

2 are obtained as follows.

P [l]
1 , l = 0, . . . , L1, is the unique solution to the following

Lyapunov equation

A[l]
d P [l]

1

(
A[l]

d

)T

− P [l]
1 =

−
(
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T

+

(
A[l]

d

)J [l] (
W [l] + Xθ(t[l])

)(
W [l] + Xθ(t[l])

)T
((

A[l]
d

)J [l])T

.

P [l]
2 , l = 0, . . . , L1, is given by

P [l]
2 =

(
I −

(
A[l]

d

)J [l])(
I −A[l]

d

)−1

·
(
W [l]

(
W [l]

)T

+ Xθ(t[l])
(
W [l]

)T
)

.

In the next section we illustrate the theoretical results pre-
sented in this section using an example from surface plasmon
resonance experiments for the determination of the kinetic
parameters of protein-protein interactions.

III. BIOMEDICAL APPLICATIONS

Surface plasmon resonance (SPR) (see, e.g. [2], [6]) occurs
under certain conditions from a conducting film at the interface
between two media of different refractive index. Biosensors
such as instruments by the BIAcore company offer a technique
for monitoring protein-protein interactions in real time using
an optical detection principle based on SPR. In the experiments
one of the proteins (ligand) is coupled to a sensor chip and the
second protein (analyte) is flowed across the surface coupled
ligand using a micro-fluidic device. SPR response reflects
a change in mass concentration at the detector surface as
molecules bind or dissociate from the sensor chip. It can
be used to estimate the kinetic constants of protein-protein
interactions.

In this section we use the theoretical results presented in
the previous section to analyze the SPR experiments for one-
to-one protein-protein interactions that can be modeled by the
differential equation

Ṙ(t) = ka (Rmax − R(t))C0(t) − kdR(t), t ≥ t[0], R(t[0]) = 0,
(11)

where R(t) is the measured SPR response in resonance
units (RU), ka and kd are the kinetic association and dis-
sociation constants of the interaction respectively, Rmax is
the maximum analyte binding capacity in RU, C0(t) is the
concentration value of the analyte in the flow cell which can
be controlled in the experiments, and the initial SPR response
is assumed to be zero.

Let xθ(t) := R(t), u(t) := C0(t), yθ(t) := R(t), t ≥ t[0],
and x0 := R(t[0]) = 0, (11) becomes the following bilinear
system Φ = {A, B, C, F1}

ẋθ(t) = Axθ(t) + F1u(t)xθ(t) + Bu(t), xθ(t[0]) = x0,
(12)

yθ(t) = Cxθ(t), t ≥ t[0], (13)

where A = −kd, B = kaRmax, C = 1, F1 = −ka. The
unknown parameter vector to be estimated in the experiments
is θ =

[
ka kd Rmax

]T
.

A practical SPR experiment may consist of an association
phase (t[0] ≤ t < t[1]) and a dissociation phase (t[1] ≤
t < t[2]), or one of these two phases. During the association
phase analyte is flowed across the ligand on the sensor chip
with constant concentration C0 up to time t[1], i.e., C0(t) =
C0, t[0] ≤ t < t[1]. The dissociation phase immediately
follows the association phase and is characterized by analyte
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free buffer being flowed across the sensor chip, i.e., C0(t) =
0, t[1] ≤ t < t[2]. Hence, a two-phase SPR experiment can be
modeled by the bilinear system Φ = {A, B, C, F1} with a
two-phase piecewise constant input

u(t) = u[0]β0(t) + u[1]β1(t), t[0] ≤ t < t[2],

where u[0] = C0, u
[1] = 0 and β0(t), β1(t) are the indicators

(see (4)). Note that in the two-phase SPR experiment the
output samples are obtained from yθ(t) for t[0] ≤ t < t[2].

The first step is the calculation of the derivative system
by Theorem 2.1. We represent the derivative system of Φ =
{A, B, C, F1} by Φ′ = {A, B, C, F1} where A, B, C, F1

are given as follows.
A := diag {∂1A, ∂2A, ∂3A} where

∂1A = ∂3A =
[ −kd 0

0 −kd

]
, ∂2A =

[ −kd 0
−1 −kd

]
.

B :=


 ∂1B

∂2B
∂3B


 where ∂1B =

[
kaRmax

Rmax

]
,

∂2B =
[

kaRmax

0

]
, ∂3B =

[
kaRmax

ka

]
.

C := diag {∂1C1, ∂2C1, ∂3C1} where

∂1C1 = ∂2C1 = ∂3C1 =
[

0 1
]
.

F1 := diag {∂1F, ∂2F, ∂3F} where

∂1F1 =
[ −ka 0

−1 −ka

]
, ∂2F1 = ∂3F1 =

[ −ka 0
0 −ka

]
.

Since the initial state x0 of Φ is equal to zero, the initial state
vector X0 of Φ′ is also equal to zero.

The next step is to apply Theorem 2.2 to numerically
calculate the CRLB. Here we use simulated data so that we
could conveniently select various experimental settings. For
comparison, typical numerical values from [6] are assigned to
the unknown parameters, i.e.,

ka = 1478 M−1s−1, kd = 4.5 × 10−3 s−1, Rmax = 7.75 RU.

The sampling intervals are chosen as T0 = T1 = 1 s, and
the noise variance is assumed to be σ2 = 1. Fig. 1 plots the
CRLB in terms of the standard deviations of ka, kd and Rmax

as functions of C0 and the number of data samples. Obviously,
it shows that increasing the number of samples improves
the accuracy of estimation. As can be seen from the figure,
when the number of samples is sufficiently large, e.g. J [0] =
J [1] = 1000, the CRLB approaches the asymptotic CRLB,
which is the lowest possible CRLB, given fixed sampling
intervals. The plot also reveals that the concentration value
C0 has an influence on the accuracy of parameter estimation.
From Fig. 1(a), the optimal values of C0 corresponding to the
lowest variances of ka for different number of data samples
lie between 1.0 × 10−5 M and 2.0 × 10−5 M, and for C0

greater than the optimal values the variance increases slowly
with C0. On the other hand, the variances of kd and Rmax
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Fig. 1. The CRLB for simulated two-phase one-to-one SPR experimental data
with T0 = T1 = 1 s and σ2 = 1. (a), (b) and (c) plot the standard deviations
of the estimates of ka, kd and Rmax respectively for different concentration
values and different numbers of samples acquired in the association and
dissociation phases.

decrease with the increase of C0, but remain almost constant
when C0 is greater than 2.0 × 10−5 M. Therefore, a good
choice of C0 for practical two-phase SPR experiments would
be around the value of 2.0 × 10−5 M .
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